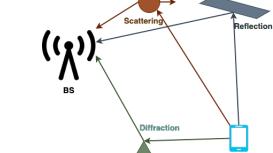
	Proposed Methods o o ooooooooooooooooooooooooooooooo	Conclusions 000	Appendix 000000

Hybrid Beam Alignment for Multi-Path Channels: A Group Testing Viewpoint

Ozlem Yildiz, Abbas Khalili, Elza Erkip

Asilomar Conference on Signals, Systems, and Computers 2022

Nov 19, 2023


Introduction ●000000	Proposed Methods 0 0000000000000000000000000000000000	Conclusions 000	Appendix 000000

Introduction

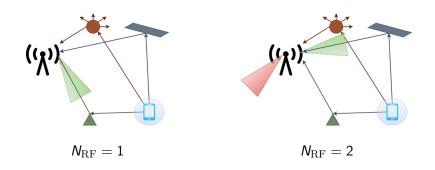
MmWave and THz frequencies:

- Larger bandwidth
- High data rates
- Obstacles
 - High path loss
 - Shadowing
 - Sparse channel

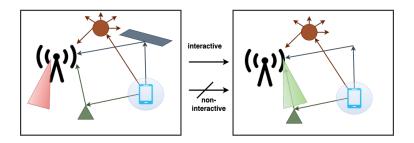
Introduction 000000	Proposed Methods o ooooooooooooooooooooooooooooooooo	Conclusions 000	Appendix 000000

 MmWave and THz channels are sparse and consist of a few spatial clusters

UE


Introduction 000000		Proposed Methods o o ooooooooooooooooooooooooooooooo	Conclusions 000	Appendix 000000
Doom Al	anmont			

- One needs to find directional beams to localize the direction of the channel clusters
 - \rightarrow Beam Alignment (BA)


Introduction 0000000	Proposed Methods o o ooooooooooooooooooooooooooooooo	Conclusions 000	Appendix 000000

BA schemes can be classified as *analog*, *hybrid*, and *digital* according to the number of Radio-Frequency (RF) Chains, $N_{\rm RF}$, used.

Introduction 0000000		Proposed Methods o o ooooooooooooooooooooooooooooooo		Conclusions 000	Appendix 000000
-------------------------	--	---	--	--------------------	--------------------

BA can be classified as *interactive* and *non-interactive* according to when the feedback is received.

Introduction 00000●0	Proposed Methods 0 0000000000000000000000000000000000	Conclusions 000	Appendix 000000

This paper

Goal

Identify multiple paths by using hybrid, interactive BA

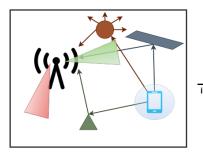
Experimental studies demonstrate that there are up to four channel clusters.

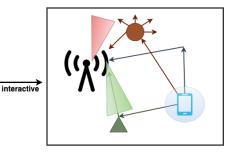
Approach

We develop algorithms using the theory of Group Testing (GT)

Introduction 000000●	Proposed Methods o o ooooooooooooooooooooooooooooooo	Conclusions 000	Appendix 000000

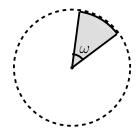
Group Testing Overview:


- ▶ Total *N* items, *M* are defective
- Tests with binary results
- Goal: to have small number of tests
- Pool the items and test them together
- Interactive or non-interactive GT


System Model and Preliminaries	Proposed Methods o o ooooooooooooooooooooooooooooooo	Conclusions 000	Appendix 000000

Network Model

- ▶ Base Station \rightarrow BA
- ► User → Omnidirectional transmission
- ▶ Hybrid BA with $N_{\rm RF}$ RF Chains



- Interactive BA
- Uplink, single user
- M channel clusters
- Noiseless

System Model and Preliminaries ● ●○ ○	Proposed Methods o o ooooooooooooooooooooooooooooooo	Conclusions 000	Appendix 000000

- Fixed beamwidth ω
- Goal: to locate angle of arrivals (AoAs) using the fewest number of BA time slots

System Model and Preliminaries ○ ○ ○	Proposed Methods 0 0000000000000000000000000000000000	Conclusions 000	Appendix 000000

Problem Formulation

Problem

$$S^*(\omega, M, N_{\mathrm{RF}}) = \operatorname*{arg\,min}_{S(\omega, M, N_{\mathrm{RF}})} E[T_{\mathrm{BA}, S}(\Psi)]$$

- $S(\omega, M, N_{\rm RF})$: Hybrid interactive BA procedure
- $T_{BA,S}$: BA duration for the procedure S
- $\Psi = (\psi_1, \psi_2, \dots, \psi_M)$: AoAs realizations, $\psi_m \stackrel{i.i.d.}{\sim} Unif([0, 2\pi])$
- ω : Angular width of the beams
- M: Number of AoAs
- ▶ $N_{\rm RF}$: Number of RF Chains

System Model and Preliminaries ○ ○ ●	Proposed Methods 0 0000000000000000000000000000000000	Conclusions 000	Appendix 000000

Related Work

- Multi-lobe beam search (MLBS) [Aykin et al., 2019, IEEE INFOCOM]
 - Analog, interactive BA for downlink to find multiple spatial clusters
- Beam alignment and group testing [Suresh *et al.*, 2019, IEEE JSTSP]
 - Analog, non-interactive BA for downlink to find multiple spatial clusters
- Generalized binary splitting algorithm (GBS) [Hwang, 1972, J Am Stat Assoc] .
 - Noiseless and interactive GT

		Proposed Methods O O O O O O O O O O O O O O O O O O	Conclusions 000	Appendix 000000
Proposed	Methods			

- Establish duality between interactive hybrid BA for multiple paths and interactive GT.
- Analog BA method based on Hwang's Generalized Binary Splitting
- Extension to novel GT-based hybrid BA for $N_{\rm RF} = 2$

	Proposed Methods	Conclusions 000	Appendix 000000

Group Testing and Beam Alignment

Fixed beamwidth
$$\omega \rightarrow N = \frac{2\pi}{\omega}$$
 angular intervals

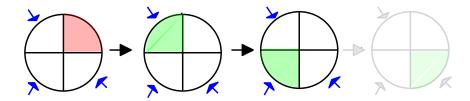
Duality

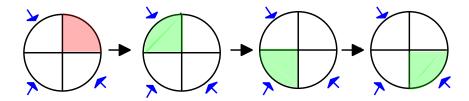
- $\blacktriangleright \ \mathsf{GT} \leftrightarrow \mathsf{BA}$
- N items \leftrightarrow N Angular intervals
- M defectives \leftrightarrow M Angular intervals that include the AoAs
- ► Tests ↔ Scanning beams
- Binary test results \leftrightarrow ACK/NACK at the BS

	Proposed Methods	Conclusions 000	Appendix 000000

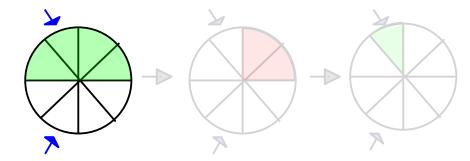
Analog Beam Alignment

- Analog GT-based BA (AGTBA)
- Based on Generalized Binary Splitting with some modifications


	Proposed Methods o o o o o o	Conclusions 000	Appendix 000000


	Proposed Methods ○ ○ ○ ○ ○	Conclusions 000	Appendix 000000

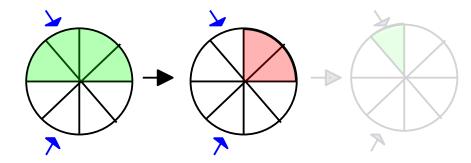
	Proposed Methods o o o o o o o	Conclusions 000	Appendix 000000


	Proposed Methods o o o o o o o	Conclusions 000	Appendix 000000

	Proposed Methods ○ ○ ○ ○ ○ ○	Conclusions 000	Appendix 000000

Bisection Search

N = 8, *M* = 2

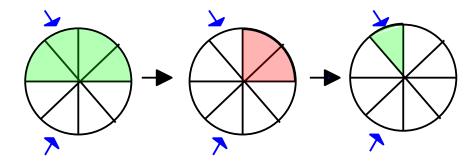


17/28

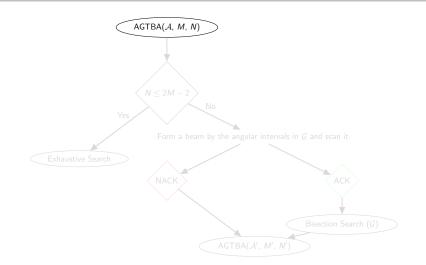
	Proposed Methods ○ ○ ○ ○ ○ ○	Conclusions 000	Appendix 000000
			/

Bisection Search

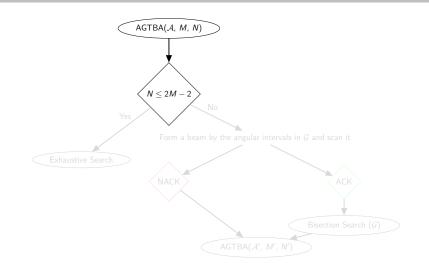
N = 8, *M* = 2

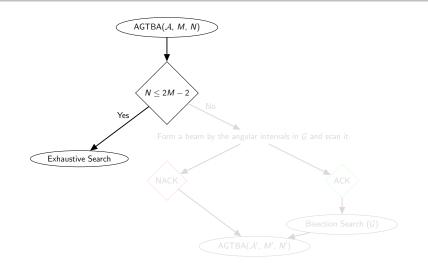


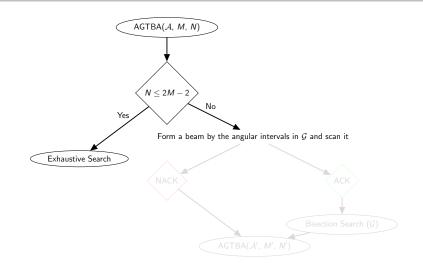
17/28

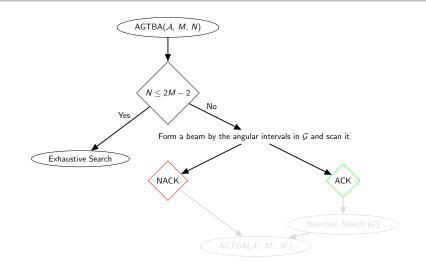

	Proposed Methods ○ ○ ○ ○	Conclusions 000	Appendix 000000

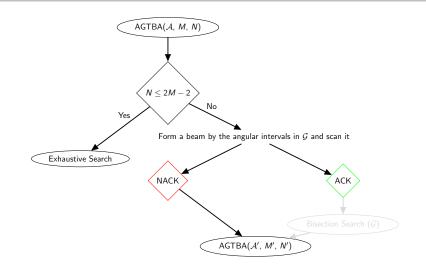
Bisection Search

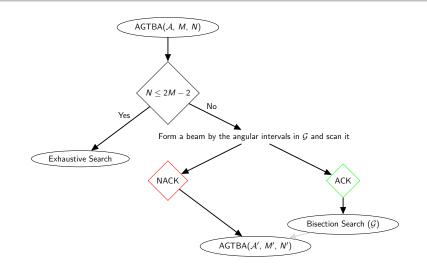

N = 8, *M* = 2

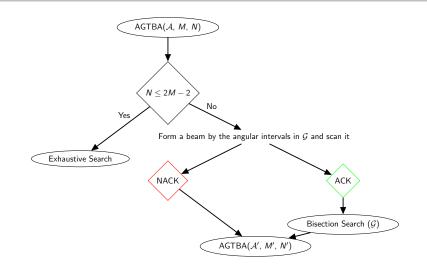

Introduction 0000000	Proposed Methods ○ ○ ○ ○ ○ ○	Conclusions 000	Appendix 000000


	Proposed Methods ○ ○ ○ ○ ○	Conclusions 000	Appendix 000000


	Proposed Methods ○ ○ ○ ○ ○	Conclusions 000	Appendix 000000

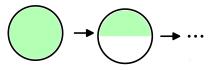

	Proposed Methods ○ ○ ○ ○ ○	Conclusions 000	Appendix 000000


	Proposed Methods ○ ○ ○ ○ ○	Conclusions 000	Appendix 000000


	Proposed Methods ○ ○ ○ ○ ○	Conclusions 000	Appendix 000000

	Proposed Methods ○ ○ ○ ○ ○	Conclusions 000	Appendix 000000

	Proposed Methods ○ ○ ○ ○ ○	Conclusions 000	Appendix 000000

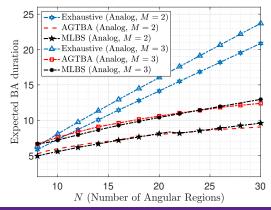

	Proposed Methods ○ ○ ○ ○ ○ ○	Conclusions 000	Appendix 000000


Differences between GBS and AGTBA

For M = 1,

AGTBA:

Generalized Binary Splitting:



0000000 0 0 000000 000 00000000000000				Conclusions 000	Appendix 000000
---------------------------------------	--	--	--	--------------------	--------------------

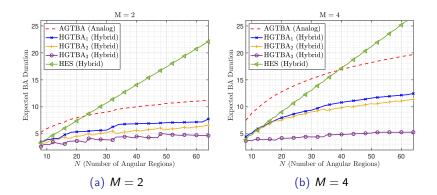
Simulations

Comparison of AGTBA, MLBS and Exhaustive search. ($N_{\rm RF} = 1$ RF-chain and M angular of arrivals)

- Similar performance with the state of the art (MLBS)
- Lower computational complexity
- Contiguous beams

	Proposed Methods ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	Conclusions 000	Appendix 000000

Hybrid Algorithms

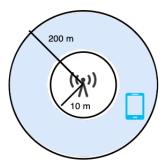

 $\textit{N}_{\rm RF}=2$

- ► HGTBA₁
 - Divide the problem into two sub-problems and solve them in parallel
- ► HGTBA₂
 - Jointly design the scanning beams of the two sub-problems in HGTBA₁
- ► HGTBA₃

Take advantage of every ACK response used by HGTBA₂

	Proposed Methods ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	Conclusions 000	Appendix 000000

Simulations



- HGTBA₃ requires the least BA duration
- ► HGTBA₃ reduces E[T_{BA}] by a factor of two and three compared to AGTBA when M = 2 and M = 4, respectively.

		Simulations	Conclusions	Appendix
	0 0 00000000000 00	0000		

5G Network Simulations

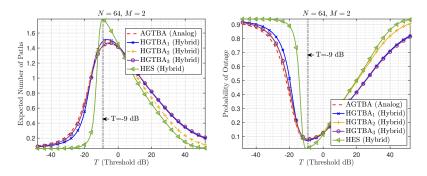
Parameter	Value
Carrier frequency	28 GHz
Bandwidth	57.6 MHz
OFDM symbol duration	8.93 μ s
BS antenna height	10 m
UE antenna height	2 m
Subcarrier spacing	120 kHz
Transmission power	20 dBm
Number of RX antennas	64

23/28

	Proposed Methods o o ooooooooooooooooooooooooooooooo	Simulations ○●○○	Conclusions 000	Appendix 000000

Beam Scanning Result

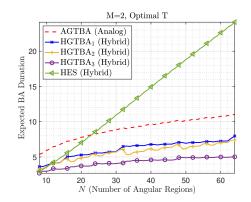
Energy detection approach:


- If P_{RX}/N_a ≥ T, we consider it acknowledgement (ACK), else negative ACK (NACK)
 - $P_{\rm RX}$: the energy of the measured signal
 - ► N_a : number of active antennas
 - ► T : threshold

Therefore,

- Low threshold \rightarrow High false alarm probability
- High threshold \rightarrow High missdetection probability

	Model and Preliminaries	Proposed Methods 0 00000000000 00	Simulations 00●0	Conclusions 000	Appendix 000000
--	-------------------------	--	---------------------	--------------------	--------------------


Expected Number of Paths and Probability of Outage

- Proposed BA methods are more sensitive to false alarm than missdetection probability
- Hybrid exhaustive search(HES) is less robust (sharper transitions) to variations of the threshold

°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°				Simulations 000●	Conclusions 000	Appendi× 000000	
---------------------------------------	--	--	--	---------------------	--------------------	--------------------	--

Expected BA Duration

 HGTBA₃ has the best performance in terms of expected BA duration

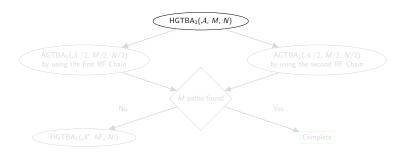
		Proposed Methods o o ooooooooooooooooooooooooooooooo	Conclusions ●00	Appendix 000000
Conclusic	n			

- Interactive hybrid BA in uplink single user, where the channel between UE and BS consists of multiple paths
- Developed novel GT-based analog and hybrid BA strategies
- Proposed BA strategies outperform state-of-the-art methods both in performance and complexity

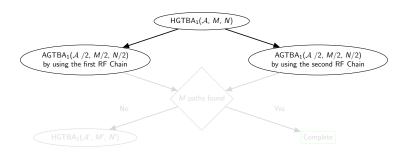
		Proposed Methods o o ooooooooooooooooooooooooooooooo	Conclusions ○●○	Appendix 000000
Future M	/ork			

- $\blacktriangleright\,$ Hybrid beam alignment, generalization to $\mathit{N}_{\rm RF}>2$
- Optimization for noisy channels
- Multi-level scanning beam results instead of binary (a.k.a. ACK and NACK)

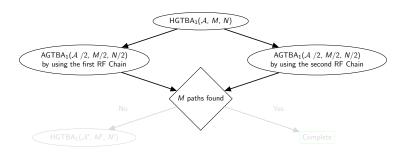
	Proposed Methods o o ooooooooooooooooooooooooooooooo	Conclusions 00●	Appendix 000000

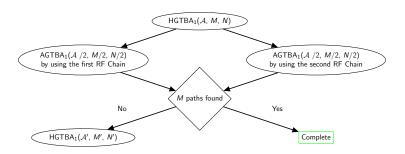

References

- M. Aldridge, O. Johnson, J. Scarlett *et al.*, "Group testing: An information theory perspective," Foundations and Trends in Communications and Information Theory, vol. 15, no. 3-4, pp. 196–392, 2019.
- I. Aykin, B. Akgun, and M. Krunz, "Multi-beam transmissions for blockage resilience and reliability in millimeter-wave systems," *IEEE JSAC*, vol. 37, no. 12, pp. 2772–2785, 2019.
- V. Suresh and D. J. Love, "Single-bit millimeter wave beam alignment using error control sounding strategies," *IEEE JSTSP*, vol. 13, no. 5, pp. 1032–1045, 2019.
- F. K. Hwang, "A method for detecting all defective members in a population by group testing," *J Am Stat Assoc*, vol. 67, no. 339, pp. 605–608, 1972.

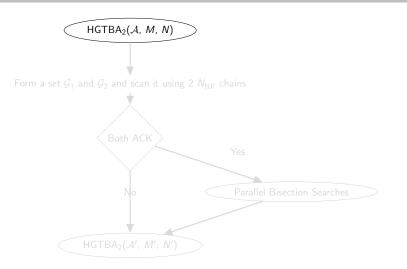

		Proposed Methods o ooooooooooooooooooooooooooooooooo	Conclusions 000	Appendix ●00000
Hybrid A	lgorithm-1			

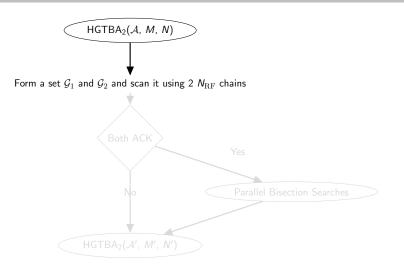
Dividing the problem into two sub-problems and solving them in parallel


			Proposed Methods o o ooooooooooooooooooooooooooooooo		Conclusions 000	Appendix o●oooo
--	--	--	---	--	--------------------	--------------------

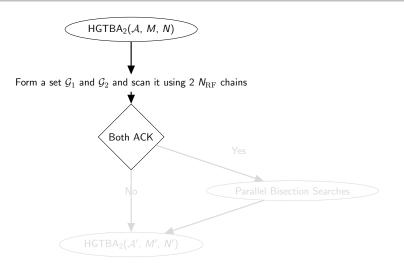

	Proposed Methods o ooooooooooooooooooooooooooooooooo	Conclusions 000	Appendix ○●○○○○

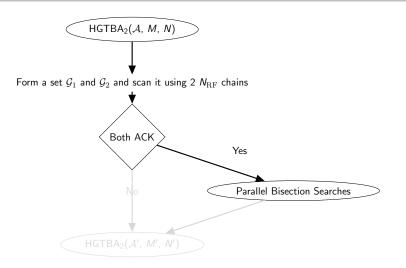
			Proposed Methods o ooooooooooooooooooooooooooooooooo		Conclusions 000	Appendix o●oooo
--	--	--	--	--	--------------------	--------------------

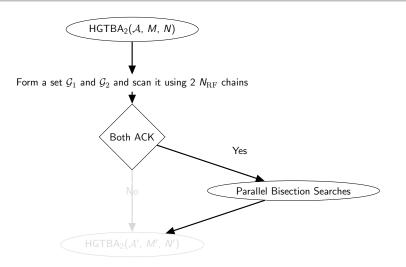

			Proposed Methods o ooooooooooooooooooooooooooooooooo		Conclusions 000	Appendix o●oooo
--	--	--	--	--	--------------------	--------------------

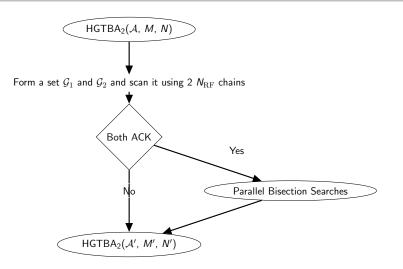

		Proposed Methods o o ooooooooooooooooooooooooooooooo	Conclusions 000	Appendix oo●ooo
Hybrid A	lgorithm-2			

 Modification: Jointly design the scanning beams of the sub-problems posed in HGTBA1

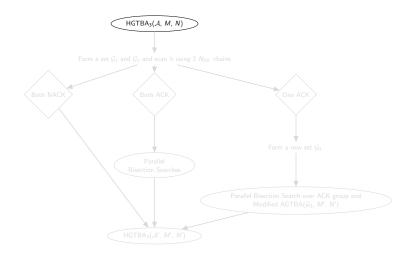

|--|

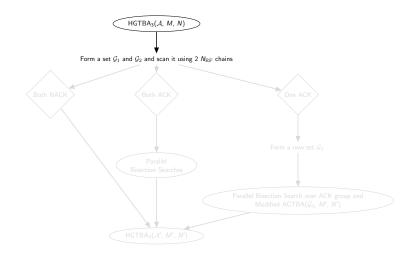

Introduction System Model and Preliminaries Proposed Methods 0000000 0 00 00 00 00 00 00 00		Conclusions 000	Appendix 000●00
---	--	--------------------	--------------------


						Appendi× ○○○●○○
--	--	--	--	--	--	--------------------

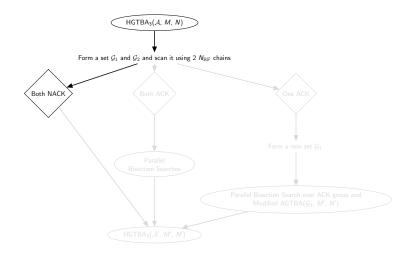

						Appendi× ○○○●○○
--	--	--	--	--	--	--------------------

						Appendi× ○○○●○○
--	--	--	--	--	--	--------------------

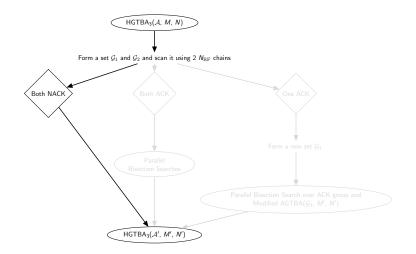

						Appendi× ○○○●○○
--	--	--	--	--	--	--------------------


		Proposed Methods o o ooooooooooooooooooooooooooooooo	Conclusions 000	Appendix 0000●0
Hybrid A	lgorithm-3			

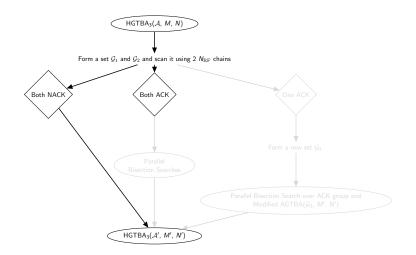
Modification: Utilizing the every ACK information while HGTBA₂ only utilizes when both sub-problems results as ACK.


|--|

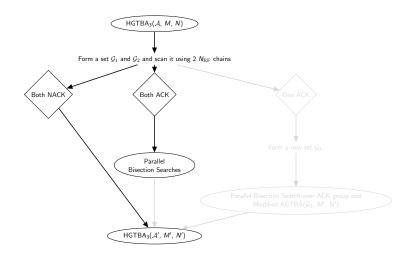
|--|

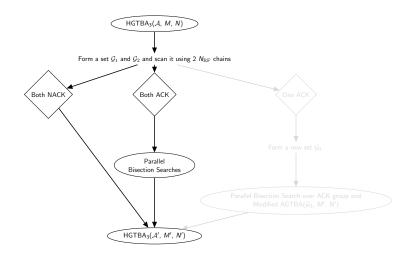


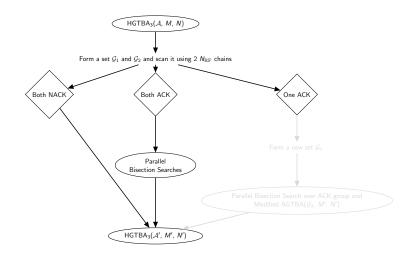
|--|



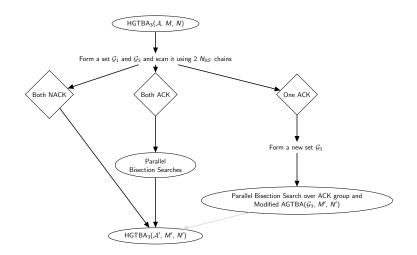
Ozlem Yildiz, Abbas Khalili, Elza Erkip

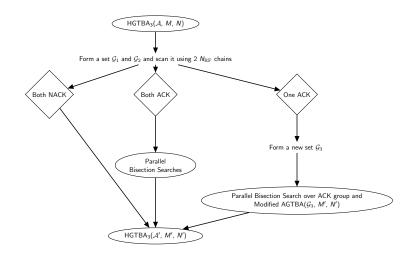

|--|


|--|


|--|


|--|


|--|


|--|

|--|

|--|

