Introduction
 System Model
 Optimization Technique
 Results and Discussion
 Conclusion

 0000
 0000
 000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000</t

Investigation and Optimization of Secrecy Capacity for Intelligent Reflective Surfaces-Assisted Secure mmWave Indoor Wireless Communication

Ozlem Yildiz^{1,2}, Mohammad Alavirad¹, **Tejinder Singh**^{1,3} ¹ Dell Technologies, ² New York University, ³ University of Waterloo

January 23, 2022

RWW 2023

Introduction •000	Optimization Technique 000	Results and Discussion	Conclusion
Introduction			

Next generation wireless communication requires

- high data rates
- ► low-latency
- reliability
- security.

New techniques to meet the requirements \rightarrow Intelligent Reflective Surfaces (IRSs)

Introduction 0●00		Optimization Technique	Results and Discussion	Conclusion 000
What is IR	S?			

IRS is an electromagnetic two-dimensional engineered surface to reconfigure the propagation path by reflecting the incoming signal by introducing a *pre-determined phase shifts*; therefore, they can create **smart** and **programmable radio environments**

Introduction		Optimization Technique	Results and Discussion	Conclusion
0000				
IRS and Se	acurity ¹			

IRSs can enhance the physical layer security in a communication link by using passive beamforming since it is directly correlated with directing the user's communication link into a desired direction

¹X. Yu, D. Xu and R. Schober, IEEE GLOBECOM, 2019

Ozlem Yildiz^{1,2}, Mohammad Alavirad¹, Tejinder Singh^{1,3}

Introduction 000●	Optimization Technique	Results and Discussion	Conclusion

IRS and Placement²

- Typically, a fixed IRS location is assumed for the performance measurements
- Issa et al. investigate IRS placement to enhance the coverage in different rooms for sub-6 GHz frequencies

²Issa, Mariam, and Hassan Artail, IEEE WiMob 2021

	System Model ●000	Optimization Technique	Results and Discussion	Conclusion
Svstem Mc	odel			

The system includes

- ▶ a transmitter (TX) with N_{TX} antennas,
- ▶ a legitimate receiver (RX) with $N_{\rm RX}$ antennas,
- ▶ an eavesdropper with N_{RX} antennas,
- \blacktriangleright an IRS with M phase shifting elements.

Channels between these are defined as follows:

- $\blacktriangleright \text{ IRS-TX} \rightarrow \mathbf{G} \in \mathbb{R}^{M \times N_{TX}}$
- ▶ IRS- Legitimate $\mathsf{RX} \to \mathbf{H} \in \mathbb{R}^{N_{RX} \times M}$
- $\blacktriangleright \text{ IRS-Eavesdropper} \rightarrow \mathbf{H}_e \in \mathbb{R}^{N_{RX} \times M}$

System Model ○●○○	Optimization Technique	Results and Discussion	Conclusion 000

Demonstration

Figure 1: (a) Demonstration of the IRS in an indoor scenario (b) Schematic of the IRS, transmitter, Tx, legitimate receiver, and eavesdropper

	System Model 00●0	Optimization Technique	Results and Discussion	Conclusion
Received S	ignal			

- $\blacktriangleright \text{ Transmitted symbol} \rightarrow \mathsf{s}$
- $\blacktriangleright\,$ Additive white gaussian channel noise $\rightarrow\,$ n
- \blacktriangleright The transmitter beamforming vector $\rightarrow \mathbf{f} \in \mathbb{R}^{N_{\mathrm{TX}} \times 1}$
- ▶ The receiver beamforming vector $o oldsymbol{\omega_i} \in \mathbb{R}^{N_{ ext{RX}} imes 1}$
 - $\blacktriangleright \ i \in \{l,e\}$ to denote the legitimate Rx and eavesdropper
- ▶ The phase shift matrix of IRS $\rightarrow \mathbf{\Phi} = \mathrm{diag}(e^{j\theta_1}, \dots, e^{j\theta_M})$
 - $\blacktriangleright \operatorname{diag}(\cdot) \rightarrow \mathsf{diagonal}$ matrix with the given diagonal values
 - ▶ $\theta_i \rightarrow$ the phase shift angles for $i \in [1, M]$
- \blacktriangleright Legitimate receiver's received signal $\rightarrow y$
- Eavesdropper's received signal $\rightarrow y_e$

$$y = \boldsymbol{\omega}_{l}^{H} \mathbf{H} \boldsymbol{\Phi} \mathbf{G} \mathbf{f} s + n$$
$$y_{e} = \boldsymbol{\omega}_{e}^{H} \mathbf{H}_{e} \boldsymbol{\Phi} \mathbf{G} \mathbf{f} s + n$$
(1)

	System Model 000●	Optimization Technique	Results and Discussion	Conclusion
Assumption	าร			

- No line-of-sight (LoS) communication link between the legitimate RX or the eavesdropper and the TX
- IRS is considered without the noise effect
- ► TX transmits with transmit power P_{TX}
- CSI is known in the receiver
- Eavesdropper beamforming vector, ω_e , is fixed towards the best direction in H_e

		Optimization Technique	Results and Discussion	Conclusion 000
Secrecy Ca	pacity			

Secrecy capacity:

$$C = \max\left\{\log\left(\frac{1 + \frac{1}{\sigma^2}|\boldsymbol{\omega}_l^H \mathbf{H} \boldsymbol{\Phi} \mathbf{G} \mathbf{f}|^2}{1 + \frac{1}{\sigma^2}|\boldsymbol{\omega}_e^H \mathbf{H}_e \boldsymbol{\Phi} \mathbf{G} \mathbf{f}|^2}\right), 0\right\}$$
(2)

Modification for the optimization:

$$C' = \log\left(\frac{1 + \frac{1}{\sigma^2} |\boldsymbol{\omega}_l^H \mathbf{H} \boldsymbol{\Phi} \mathbf{G} \mathbf{f}|^2}{1 + \frac{1}{\sigma^2} |\boldsymbol{\omega}_e^H \mathbf{H}_e \boldsymbol{\Phi} \mathbf{G} \mathbf{f}|^2}\right)$$
(3)

	Optimization Technique 000	Results and Discussion	Conclusion 000
Optimization			

Formulation of the optimization:

$$\mathcal{P} : \underset{\boldsymbol{\omega}_{l}, \mathbf{f}, \Phi}{\operatorname{maximize} C'}$$

subject to $|\mathbf{f}|^{2} < P_{Tx}$
 $|\boldsymbol{\omega}_{l}| < 1$
 $\Phi = diag(e^{j\theta_{1}}, ..., e^{j\theta_{M}})$ (4)

Constraint change:

$$\mathcal{P} : \underset{\boldsymbol{\omega}_{l}, \mathbf{f}, \theta}{\operatorname{maximize}} C'$$
subject to $|\mathbf{f}|^{2} < P_{TX}$ and $|\boldsymbol{\omega}_{l}| < 1$ (5)
when $\mathbf{\Phi} = diag(e^{j\theta_{1}}, ..., e^{j\theta_{M}})$

	Optimization Technique	Results and Discussion	Conclusion
	000		

Projected Gradient Descent

The secrecy capacity is convex for \mathbf{f} , ω_l , and Φ , when the other parameters are fixed and there are constraints for the optimization due to power. Therefore, we use *projected gradient descent* (PGD) as an optimization algorithm.

		Optimization Technique	Results and Discussion	Conclusion
Simulation	Setup			

- Mathworks Ray-Tracer toolbox is used to calculate pathloss according to the location and the room specifications
- Optimal learning rate is an exhaustive search
- Maximum PGD iteration number is 10⁶ but after the average of the change in 100 iterations is lower than 10⁻⁶, we accept as a convergence

	Optimization Technique	Results and Discussion	Conclusion
		00000	

Simulation Parameters

Table 1: Simulation Parameters

Parameter	Values
Transmit Power, P_{TX}	26 dBm
Noise Figure	6 dBm
Center frequency, f_c	28 GHz
Symbol duration, $T_{ m dur}$	$8.92\times 10^{-6}~{\rm s}$
Number of Tx antennas, N_{TX}	64
Number of Rx antennas, N_{RX}	16
Number of reflecting elements, M	20
IRS fixed Location, (x, z)	(-3.05, -3, 1.5)

	Optimization Technique	Results and Discussion 00●000	Conclusion

Simulation Environment

Figure 2: 3D indoor environment highlighting Tx, legitimate Rx, and eavesdropper. Dashed line represent optimization path for the IRS placement.

	Optimization Technique	Results and Discussion	Conclusion
		000000	

The Optimization with Different Carrier Frequencies

- ► At f_c = 2.8 GHz, the secrecy capacity is higher by a factor of two compared to f_c = 28 GHz because path loss increases with the frequency increase.
- At f_c = 28 GHz, the convergence duration reduces by at least a factor of three.

	Optimization Technique	Results and Discussion	Conclusion
		000000	

The Effect of the Location

When the location in y-axis approaches towards -3.5, the IRS's distance with the legitimate Rx decreases while the distance with the eavesdropper increases, so the secrecy capacity increases by more than 1 bits/s/Hz.

	Optimization Technique	Results and Discussion	Conclusion

RF Power and Number of Reflecting Elements

Changing the P_{TX} from 26 dBm to 31 dBm and M from 20 to 36 have the same effect on secrecy capacity improvement

	Optimization Technique	Results and Discussion	Conclusion ●00
Conclusion			

- Security capability investigation of an IRS-assisted indoor wireless communication system in mmWave regime
- Optimal indoor placement of IRS for secrecy capacity using Ray-Tracing
- New optimization technique by Projected Gradient Descent

	Optimization Technique	Results and Discussion	Conclusion 0●0
Euturo Morl			

- The comparison of different secrecy capacity optimization schemes
- Generalization to different room settings
- Investigation of different measures for physical layer security
- Investigation with more realistic IRS phase shift matrix

	Optimization Technique	Results and Discussion	Conclusion
References			

- X. Yu, D. Xu, and R. Schober, "Enabling secure wireless communications via intelligent reflecting surfaces," in 2019 IEEE Global Commu. Conf. (GLOBECOM), 2019, pp. 1–6.
- M. Issa and H. Artail, "Using reflective intelligent surfaces for indoor scenarios: Channel modeling and ris placement," in 2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). IEEE, 2021, pp. 277–282.