

Investigation and Optimization of Secrecy Capacity for Intelligent Reflective Surfaces-Assisted Secure mmWave Indoor Wireless Communication

Ozlem Yildiz 1,2 , Mohammad Alavirad 1 , Tejinder Singh 1,3 1 Dell Technologies, 2 New York University, 3 University of Waterloo

January 23, 2022

Next generation wireless communication requires

- \blacktriangleright high data rates
- ▶ low-latency
- \blacktriangleright reliability
- \blacktriangleright security.

New techniques to meet the requirements \rightarrow Intelligent Reflective Surfaces (IRSs)

IRS is an electromagnetic two-dimensional engineered surface to reconfigure the propagation path by reflecting the incoming signal by introducing a pre-determined phase shifts; therefore, they can create smart and programmable radio environments

▶ IRSs can enhance the physical layer security in a communication link by using passive beamforming since it is directly correlated with directing the user's communication link into a desired direction

¹X. Yu, D. Xu and R. Schober, IEEE GLOBECOM, 2019

[RWW 2023](#page-0-0) **Ozlem Yildiz^{1,2}, Mohammad Alavirad¹, Tejinder Singh**^{1,3}

I and Placement

- \blacktriangleright Typically, a fixed IRS location is assumed for the performance measurements
- Issa et al. investigate IRS placement to enhance the coverage in different rooms for sub-6 GHz frequencies

2 Issa, Mariam, and Hassan Artail, IEEE WiMob 2021

The system includes

- \blacktriangleright a transmitter (TX) with N_{TX} antennas,
- **•** a legitimate receiver (RX) with N_{RX} antennas,
- **an eavesdropper with** N_{RX} **antennas,**
- \triangleright an IRS with M phase shifting elements.

Channels between these are defined as follows:

- ▶ IRS-TX \rightarrow G $\in \mathbb{R}^{M \times N_{TX}}$
- ▶ IRS- Legitimate $\mathsf{RX} \to \mathbf{H} \in \mathbb{R}^{N_{RX} \times M}$
- \blacktriangleright IRS-Eavesdropper \rightarrow $\mathbf{H}_e \in \mathbb{R}^{N_{RX} \times M}$

Demonstration

Figure 1: (a) Demonstration of the IRS in an indoor scenario (b) Schematic of the IRS, transmitter, Tx, legitimate receiver, and eavesdropper

- ▶ Transmitted symbol \rightarrow s
- ▶ Additive white gaussian channel noise \rightarrow n
- \blacktriangleright The transmitter beamforming vector \rightarrow $\mathbf{f} \in \mathbb{R}^{N_{\text{TX}} \times 1}$
- ▶ The receiver beamforming vector $\rightarrow \omega_i \in \mathbb{R}^{N_\mathrm{RX} \times 1}$
	- \blacktriangleright $i \in \{l, e\}$ to denote the legitimate Rx and eavesdropper
- ▶ The phase shift matrix of IRS $\rightarrow \mathbf{\Phi} = \text{diag}(e^{j\theta_1}, \dots, e^{j\theta_M})$
	- \blacktriangleright diag(\cdot) \rightarrow diagonal matrix with the given diagonal values
	- $\blacktriangleright \theta_i \to \text{the phase shift angles for } i \in [1, M]$
- ▶ Legitimate receiver's received signal $→ y$
- ▶ Eavesdropper's received signal $\rightarrow y_e$

$$
y = \omega_l^H \mathbf{H} \mathbf{\Phi} \mathbf{G} \mathbf{f} s + n
$$

$$
y_e = \omega_e^H \mathbf{H}_e \mathbf{\Phi} \mathbf{G} \mathbf{f} s + n
$$
 (1)

- ▶ No line-of-sight (LoS) communication link between the legitimate RX or the eavesdropper and the TX
- \triangleright IRS is considered without the noise effect
- \blacktriangleright TX transmits with transmit power P_{TX}
- \triangleright CSI is known in the receiver
- Eavesdropper beamforming vector, ω_e , is fixed towards the best direction in H_e

▶ Secrecy capacity:

$$
C = \max \left\{ \log \left(\frac{1 + \frac{1}{\sigma^2} |\omega_l^H \mathbf{H} \mathbf{\Phi} \mathbf{G} \mathbf{f}|^2}{1 + \frac{1}{\sigma^2} |\omega_e^H \mathbf{H}_e \mathbf{\Phi} \mathbf{G} \mathbf{f}|^2} \right), 0 \right\}
$$
(2)

 \blacktriangleright Modification for the optimization:

$$
C' = \log \left(\frac{1 + \frac{1}{\sigma^2} |\omega_l^H \mathbf{H} \mathbf{\Phi} \mathbf{G} \mathbf{f}|^2}{1 + \frac{1}{\sigma^2} |\omega_e^H \mathbf{H}_e \mathbf{\Phi} \mathbf{G} \mathbf{f}|^2} \right)
$$
(3)

▶ Formulation of the optimization:

$$
\mathcal{P}: \underset{\omega_l, \mathbf{f}, \Phi}{\text{maximize}} C'
$$
\n
$$
\text{subject to} \quad |\mathbf{f}|^2 < P_{Tx} \tag{4}
$$
\n
$$
|\omega_l| < 1 \quad \Phi = diag(e^{j\theta_1}, \dots, e^{j\theta_M})
$$

▶ Constraint change:

$$
\mathcal{P}: \underset{\omega_l, \mathbf{f}, \theta}{\text{maximize}} C'
$$
\n
$$
\text{subject to} \quad |\mathbf{f}|^2 < P_{TX} \text{ and } |\omega_l| < 1 \tag{5}
$$
\n
$$
\text{when } \Phi = diag(e^{j\theta_1}, \dots, e^{j\theta_M})
$$

Projected Gradient Descent

The secrecy capacity is convex for ${\bf f}$, ${\boldsymbol \omega}_l$, and ${\bf \Phi}$, when the other parameters are fixed and there are constraints for the optimization due to power. Therefore, we use projected gradient descent (PGD) as an optimization algorithm.

- \blacktriangleright Mathworks Ray-Tracer toolbox is used to calculate pathloss according to the location and the room specifications
- \triangleright Optimal learning rate is an exhaustive search
- \blacktriangleright Maximum PGD iteration number is 10^6 but after the average of the change in 100 iterations is lower than 10^{-6} , we accept as a convergence

Simulation Parameters

Ē.

Table 1: Simulation Parameters

Simulation Environment

Figure 2: 3D indoor environment highlighting Tx, legitimate Rx, and eavesdropper. Dashed line represent optimization path for the IRS placement.

The Optimization with Different Carrier Frequencies

- At $f_c = 2.8$ GHz, the secrecy capacity is higher by a factor of two compared to $f_c = 28$ GHz because path loss increases with the frequency increase.
- At $f_c = 28$ GHz, the convergence duration reduces by at least a factor of three.

The Effect of the Location

When the location in y-axis approaches towards -3.5 , the IRS's distance with the legitimate Rx decreases while the distance with the eavesdropper increases, so the secrecy capacity increases by more than 1 bits/s/Hz.

RF Power and Number of Reflecting Elements

 \triangleright Changing the P_{TX} from 26 dBm to 31 dBm and M from 20 to 36 have the same effect on secrecy capacity improvement

- \triangleright Security capability investigation of an IRS-assisted indoor wireless communication system in mmWave regime
- ▶ Optimal indoor placement of IRS for secrecy capacity using Ray-Tracing
- ▶ New optimization technique by Projected Gradient Descent

- \blacktriangleright The comparison of different secrecy capacity optimization schemes
- ▶ Generalization to different room settings
- \blacktriangleright Investigation of different measures for physical layer security
- \blacktriangleright Investigation with more realistic IRS phase shift matrix

- X. Yu, D. Xu, and R. Schober, "Enabling secure wireless communications via intelligent reflecting surfaces," in 2019 IEEE Global Commu. Conf. (GLOBECOM), 2019, pp. 1–6.
- 暈 M. Issa and H. Artail, "Using reflective intelligent surfaces for indoor scenarios: Channel modeling and ris placement," in 2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). IEEE, 2021, pp. 277–282.